266 research outputs found

    Fractal dimension crossovers in turbulent passive scalar signals

    Get PDF
    The fractal dimension δg(1)\delta_g^{(1)} of turbulent passive scalar signals is calculated from the fluid dynamical equation. δg(1)\delta_g^{(1)} depends on the scale. For small Prandtl (or Schmidt) number Pr<102Pr<10^{-2} one gets two ranges, δg(1)=1\delta_g^{(1)}=1 for small scale r and δg(1)\delta_g^{(1)}=5/3 for large r, both as expected. But for large Pr>1Pr> 1 one gets a third, intermediate range in which the signal is extremely wrinkled and has δg(1)=2\delta_g^{(1)}=2. In that range the passive scalar structure function Dθ(r)D_\theta(r) has a plateau. We calculate the PrPr-dependence of the crossovers. Comparison with a numerical reduced wave vector set calculation gives good agreement with our predictions.Comment: 7 pages, Revtex, 3 figures (postscript file on request

    Intrinsic Neuronal Properties Switch the Mode of Information Transmission in Networks

    Get PDF
    Diverse ion channels and their dynamics endow single neurons with complex biophysical properties. These properties determine the heterogeneity of cell types that make up the brain, as constituents of neural circuits tuned to perform highly specific computations. How do biophysical properties of single neurons impact network function? We study a set of biophysical properties that emerge in cortical neurons during the first week of development, eventually allowing these neurons to adaptively scale the gain of their response to the amplitude of the fluctuations they encounter. During the same time period, these same neurons participate in large-scale waves of spontaneously generated electrical activity. We investigate the potential role of experimentally observed changes in intrinsic neuronal properties in determining the ability of cortical networks to propagate waves of activity. We show that such changes can strongly affect the ability of multi-layered feedforward networks to represent and transmit information on multiple timescales. With properties modeled on those observed at early stages of development, neurons are relatively insensitive to rapid fluctuations and tend to fire synchronously in response to wave-like events of large amplitude. Following developmental changes in voltage-dependent conductances, these same neurons become efficient encoders of fast input fluctuations over few layers, but lose the ability to transmit slower, population-wide input variations across many layers. Depending on the neurons' intrinsic properties, noise plays different roles in modulating neuronal input-output curves, which can dramatically impact network transmission. The developmental change in intrinsic properties supports a transformation of a networks function from the propagation of network-wide information to one in which computations are scaled to local activity. This work underscores the significance of simple changes in conductance parameters in governing how neurons represent and propagate information, and suggests a role for background synaptic noise in switching the mode of information transmission

    Anomalous Scaling in the N-Point Functions of Passive Scalar

    Full text link
    A recent analysis of the 4-point correlation function of the passive scalar advected by a time-decorrelated random flow is extended to the N-point case. It is shown that all stationary-state inertial-range correlations are dominated by homogeneous zero modes of singular operators describing their evolution. We compute analytically the zero modes governing the N-point structure functions and the anomalous dimensions corresponding to them to the linear order in the scaling exponent of the 2-point function of the advecting velocity field. The implications of these calculations for the dissipation correlations are discussed.Comment: 16 pages, latex fil

    The Viscous Lengths in Hydrodynamic Turbulence are Anomalous Scaling Functions

    Full text link
    It is shown that the idea that scaling behavior in turbulence is limited by one outer length LL and one inner length η\eta is untenable. Every n'th order correlation function of velocity differences \bbox{\cal F}_n(\B.R_1,\B.R_2,\dots) exhibits its own cross-over length ηn\eta_{n} to dissipative behavior as a function of, say, R1R_1. This length depends on nn {and on the remaining separations} R2,R3,R_2,R_3,\dots. One result of this Letter is that when all these separations are of the same order RR this length scales like ηn(R)η(R/L)xn\eta_n(R)\sim \eta (R/L)^{x_n} with xn=(ζnζn+1+ζ3ζ2)/(2ζ2)x_n=(\zeta_n-\zeta_{n+1}+\zeta_3-\zeta_2)/(2-\zeta_2), with ζn\zeta_n being the scaling exponent of the nn'th order structure function. We derive a class of scaling relations including the ``bridge relation" for the scaling exponent of dissipation fluctuations μ=2ζ6\mu=2-\zeta_6.Comment: PRL, Submitted. REVTeX, 4 pages, I fig. (not included) PS Source of the paper with figure avalable at http://lvov.weizmann.ac.il/onlinelist.htm

    A Simple Passive Scalar Advection-Diffusion Model

    Full text link
    This paper presents a simple, one-dimensional model of a randomly advected passive scalar. The model exhibits anomalous inertial range scaling for the structure functions constructed from scalar differences. The model provides a simple computational test for recent ideas regarding closure and scaling for randomly advected passive scalars. Results suggest that high order structure function scaling depends on the largest velocity eddy size, and hence scaling exponents may be geometry-dependent and non-universal.Comment: 30 pages, 11 figure

    Manifestation of anisotropy persistence in the hierarchies of MHD scaling exponents

    Full text link
    The first example of a turbulent system where the failure of the hypothesis of small-scale isotropy restoration is detectable both in the `flattening' of the inertial-range scaling exponent hierarchy, and in the behavior of odd-order dimensionless ratios, e.g., skewness and hyperskewness, is presented. Specifically, within the kinematic approximation in magnetohydrodynamical turbulence, we show that for compressible flows, the isotropic contribution to the scaling of magnetic correlation functions and the first anisotropic ones may become practically indistinguishable. Moreover, skewness factor now diverges as the P\'eclet number goes to infinity, a further indication of small-scale anisotropy.Comment: 4 pages Latex, 1 figur

    Renormalization group and anomalous scaling in a simple model of passive scalar advection in compressible flow

    Full text link
    Field theoretical renormalization group methods are applied to a simple model of a passive scalar quantity advected by the Gaussian non-solenoidal (``compressible'') velocity field with the covariance δ(tt)xxϵ\propto\delta(t-t')| x-x'|^{\epsilon}. Convective range anomalous scaling for the structure functions and various pair correlators is established, and the corresponding anomalous exponents are calculated to the order ϵ2\epsilon^2 of the ϵ\epsilon expansion. These exponents are non-universal, as a result of the degeneracy of the RG fixed point. In contrast to the case of a purely solenoidal velocity field (Obukhov--Kraichnan model), the correlation functions in the case at hand exhibit nontrivial dependence on both the IR and UV characteristic scales, and the anomalous scaling appears already at the level of the pair correlator. The powers of the scalar field without derivatives, whose critical dimensions determine the anomalous exponents, exhibit multifractal behaviour. The exact solution for the pair correlator is obtained; it is in agreement with the result obtained within the ϵ\epsilon expansion. The anomalous exponents for passively advected magnetic fields are also presented in the first order of the ϵ\epsilon expansion.Comment: 31 pages, REVTEX file. More detailed discussion of the one-dimensional case and comparison to the previous paper [20] are given; references updated. Results and formulas unchange

    Anomalous scaling in random shell models for passive scalars

    Full text link
    A shell-model version of Kraichnan's (1994 {\it Phys. Rev. Lett. \bf 72}, 1016) passive scalar problem is introduced which is inspired from the model of Jensen, Paladin and Vulpiani (1992 {\it Phys. Rev. A\bf 45}, 7214). As in the original problem, the prescribed random velocity field is Gaussian, delta-correlated in time and has a power-law spectrum kmξ\propto k_m^{-\xi}, where kmk_m is the wavenumber. Deterministic differential equations for second and fourth-order moments are obtained and then solved numerically. The second-order structure function of the passive scalar has normal scaling, while the fourth-order structure function has anomalous scaling. For ξ=2/3\xi = 2/3 the anomalous scaling exponents ζp\zeta_p are determined for structure functions up to p=16p=16 by Monte Carlo simulations of the random shell model, using a stochastic differential equation scheme, validated by comparison with the results obtained for the second and fourth-order structure functions.Comment: Plain LaTex, 15 pages, 4 figure available upon request to [email protected]

    Exact Resummations in the Theory of Hydrodynamic Turbulence: III. Scenarios for Anomalous Scaling and Intermittency

    Full text link
    Elements of the analytic structure of anomalous scaling and intermittency in fully developed hydrodynamic turbulence are described. We focus here on the structure functions of velocity differences that satisfy inertial range scaling laws Sn(R)RζnS_n(R)\sim R^{\zeta_n}, and the correlation of energy dissipation Kϵϵ(R)RμK_{\epsilon\epsilon}(R) \sim R^{-\mu}. The goal is to understand the exponents ζn\zeta_n and μ\mu from first principles. In paper II of this series it was shown that the existence of an ultraviolet scale (the dissipation scale η\eta) is associated with a spectrum of anomalous exponents that characterize the ultraviolet divergences of correlations of gradient fields. The leading scaling exponent in this family was denoted Δ\Delta. The exact resummation of ladder diagrams resulted in the calculation of Δ\Delta which satisfies the scaling relation Δ=2ζ2\Delta=2-\zeta_2. In this paper we continue our analysis and show that nonperturbative effects may introduce multiscaling (i.e. ζn\zeta_n not being linear in nn) with the renormalization scale being the infrared outer scale of turbulence LL. It is shown that deviations from K41 scaling of Sn(R)S_n(R) (ζnn/3\zeta_n\neq n/3) must appear if the correlation of dissipation is mixing (i.e. μ>0\mu>0). We derive an exact scaling relation μ=2ζ2ζ4\mu = 2\zeta_2-\zeta_4. We present analytic expressions for ζn\zeta_n for all nn and discuss their relation to experimental data. One surprising prediction is that the time decay constant τn(R)Rzn\tau_n(R)\propto R^{z_n} of Sn(R)S_n(R) scales independently of nn: the dynamic scaling exponent znz_n is the same for all nn-order quantities, zn=ζ2z_n=\zeta_2.Comment: PRE submitted, 22 pages + 11 figures, REVTeX. The Eps files of figures will be FTPed by request to [email protected]

    Towards a Nonperturbative Theory of Hydrodynamic Turbulence:Fusion Rules, Exact Bridge Relations and Anomalous Viscous Scaling Functions

    Full text link
    In this paper we derive here, on the basis of the NS eqs. a set of fusion rules for correlations of velocity differences when all the separation are in the inertial interval. Using this we consider the standard hierarchy of equations relating the nn-th order correlations (originating from the viscous term in the NS eq.) to n+1n+1'th order (originating from the nonlinear term) and demonstrate that for fully unfused correlations the viscous term is negligible. Consequently the hierarchic chain is decoupled in the sense that the correlations of n+1n+1'th order satisfy a homogeneous equation that may exhibit anomalous scaling solutions. Using the same hierarchy of eqs. when some separations go to zero we derive a second set of fusion rules for correlations with differences in the viscous range. The latter includes gradient fields. We demonstrate that every n'th order correlation function of velocity differences {\cal F}_n(\B.R_1,\B.R_2,\dots) exhibits its own cross-over length ηn\eta_{n} to dissipative behavior as a function of, say, R1R_1. This length depends on nn {and on the remaining separations} R2,R3,R_2,R_3,\dots. When all these separations are of the same order RR this length scales like ηn(R)η(R/L)xn\eta_n(R)\sim \eta (R/L)^{x_n} with xn=(ζnζn+1+ζ3ζ2)/(2ζ2)x_n=(\zeta_n-\zeta_{n+1}+\zeta_3-\zeta_2)/(2-\zeta_2), with ζn\zeta_n being the scaling exponent of the nn'th order structure function. We derive a class of exact scaling relations bridging the exponents of correlations of gradient fields to the exponents ζn\zeta_n of the nn'th order structure functions. One of these relations is the well known ``bridge relation" for the scaling exponent of dissipation fluctuations μ=2ζ6\mu=2-\zeta_6.Comment: PRE, Submitted. REVTeX, 18 pages, 7 figures (not included) PS Source of the paper with figures avalable at http://lvov.weizmann.ac.il/onlinelist.htm
    corecore